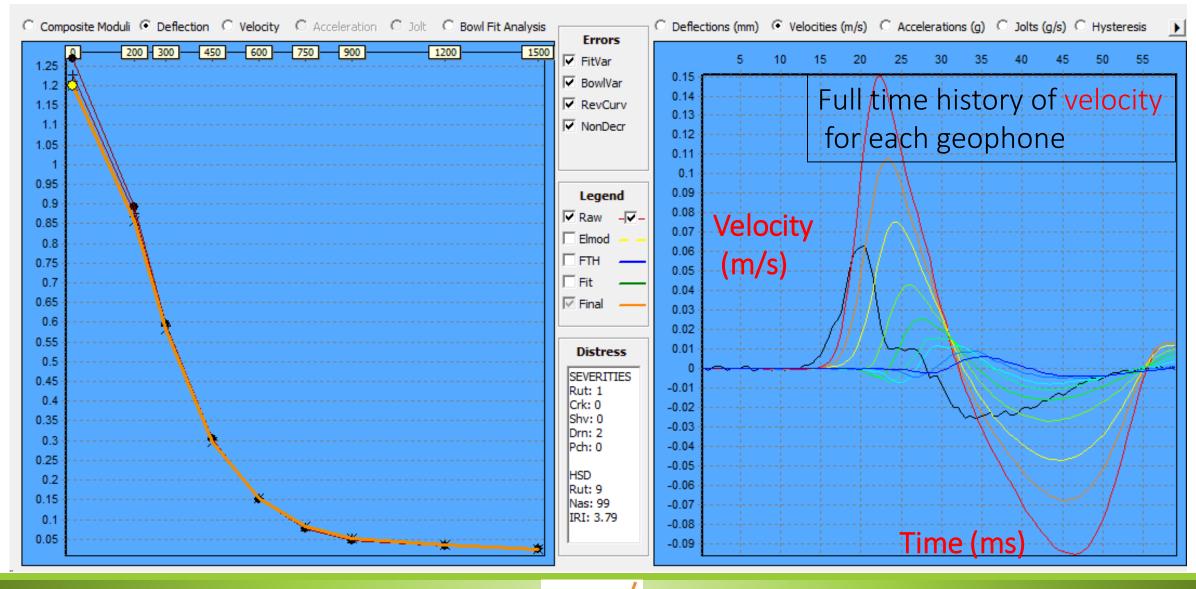
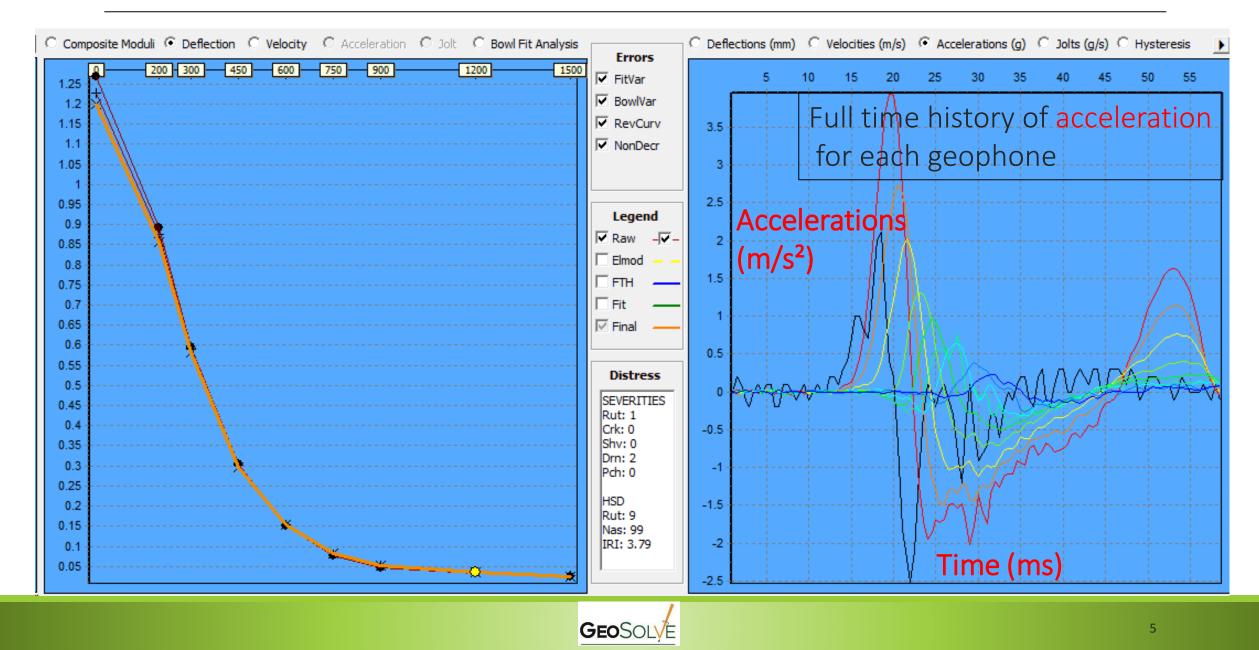
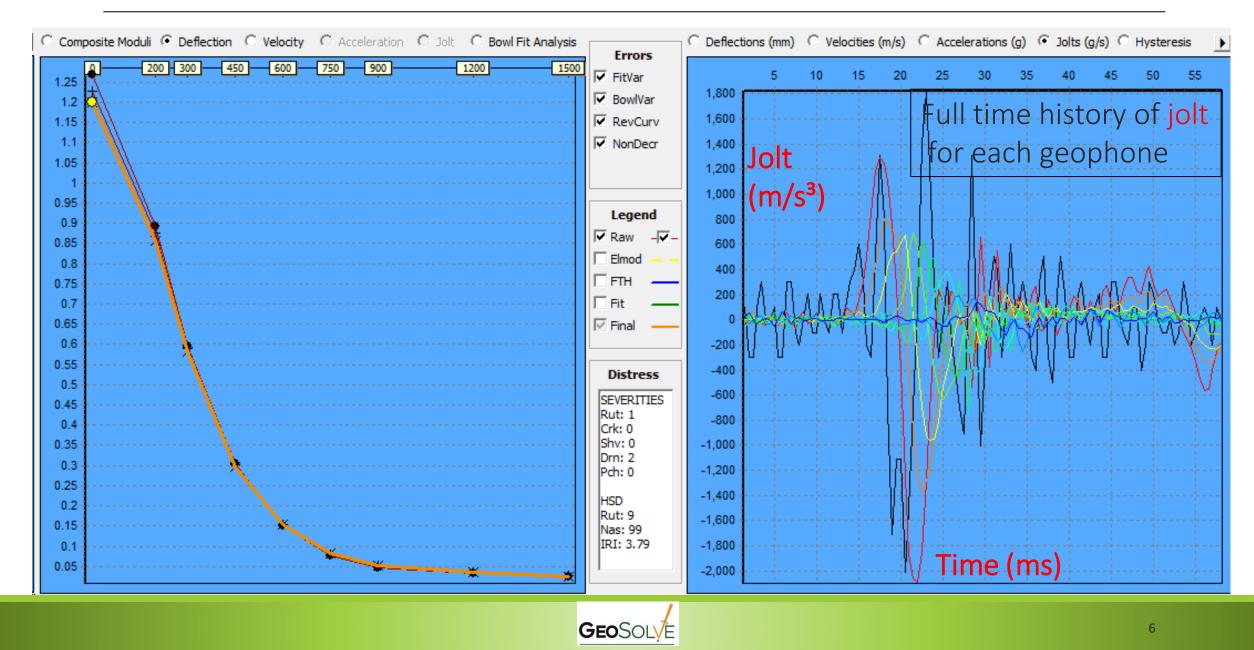
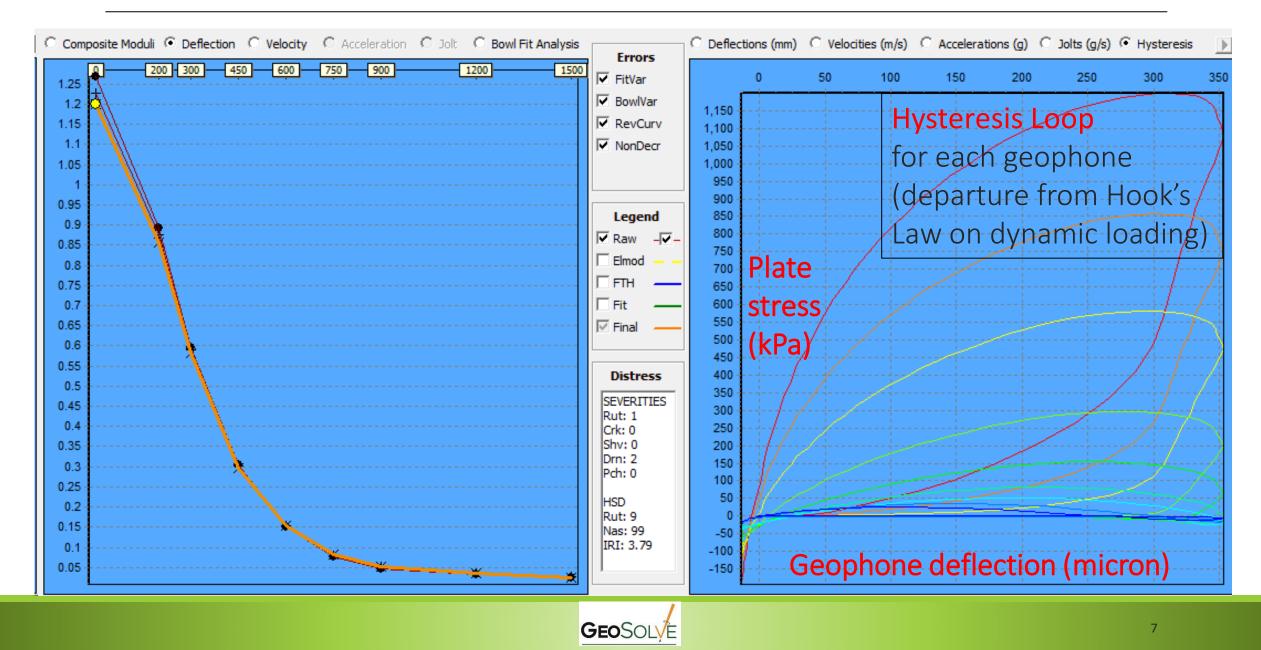


Pavement Life and Forward Works Programme


PAVEMENT STRUCTURAL EVALUATIONS FOR ASSET MANAGEMENT

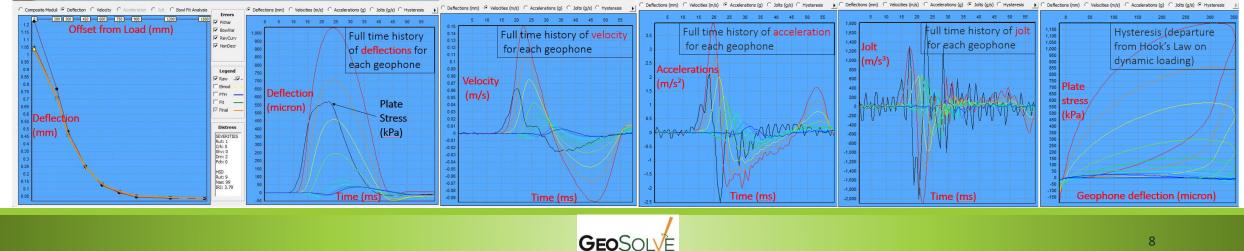



(MPa)-LogarithmicScale	<u> </u>	 	
us Exponent			
us (MPa) - LogarithmicScale			
Deflection (mm)		 	
(mm) - NZ RPP Fatigue Model			
Structural Fatigue (Governing)			
Surfacing Fatigue (Governing)			
Structural (Aggregate Rutting)			
Structural (Shallow Shear)			
Structural (Subgrade Rutting)			
Structural (Subgrade Shear)			
Structural (Seal Deformation)			
Surfacing Flexure			
Cemented Base Gadking			
Structural Economic			
Surfacing Economic			
Aggregate Instability			
Structural (Subbase Deformation)			
ing IAL (Uncalibrated)			
ghness IAL (Uncalibrated)			
- Austroads 2011 (Part 5)			
Austroads (GMP-Rigorous)			
troads 2011 (Part 5) - AC			
troads (GMP-Rigorous)			
troads AC/OGPA Cradking			
Structural (Accumulated Deformation)			



Deflection Interpretation - Are we adopting the state-of-the-art?

Benkelman Beam (1952)


Structural Number (1962), advanced by World Bank in

HDM models in 1987, adopted in NZ in 1999 shortly

before being discarded by AASTHO in 2004.

Both approaches (and associated empirical parameters: d0, d200, SCI, SN, SNC, SNP) discard the majority of useful information that relates to the moduli, (and degree of linearity), stresses and strains in the pavement layers, that can be obtained from the full dynamic deflection response.

Using any of the basic layered elastic models for pavements, corresponding plots can now be readily generated for a wide variety of mechanistic parameters, i.e. stresses, strains or moduli at any time during the test to identify characteristics generated by pavements subject to specific distress modes.

The following slides give example pavement structural models for networks.

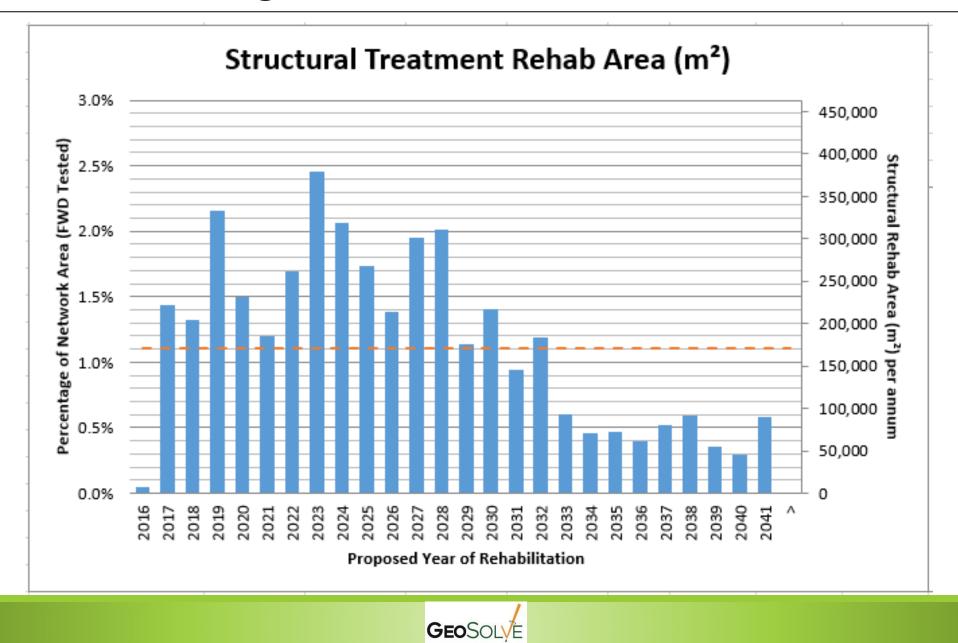
Correctly identifying the limits of homogeneous intervals of road, ie structural treatment lengths enables efficient management of the network. Often only visual data is available which needs to be supplemented with historic performance information. However, deflection testing and structural analysis provides the most informative approach.

The Structural Treatment Length (STL) file comprises the information illustrated in the pavement models in tabular form. The following are some of the structural treatment lengths with higher priority for renewal, identified in the preliminary study (uncalibrated desktop structural evaluation, i.e. visuals required) for the North Canterbury NOC.

Road ID	File Name	Start (km)	End (km)	Length (km)	Number of Test Points	RPP (Precedent) Life (Years) - User Weight 🖕
1831	015-0332	2.030	3.430	1.400	14	2
625	015-0311	5.000	5.532	0.532	5	3
610	007-0000-1	10.300	11.900	1.600	7	8
			GEOSC			

										Drainag	e Parameters	tr	uctural Treatme	nt (mm) - Subject to	o Detailed Desig	
Road ID		Start (km)	End (km)	Length (km)	Number of Test Points	RPP (Precedent) Life (Years) - User Weight 🖕	Life (Years) - FWP NZTA Specified	Life (Years) - FWP dTIMS	RPP Distress Mode	Potential for Subsoil Drainag 🚽	Priority for Drainage (Greatest Benefi		Proportion of ength Digouts / Patching	Depth of Reconstruction / Digouts / Patching	Unbound Granular Overlay (RF 🔭	RPP Rehab Year
	007-0016-I	7.720	8.120	0.400	2				Aggregate Instability	High	10.0		1.0		160	
	007-0016-D	2.020	2.420		2				Aggregate Instability	High	10.0		1.0		160	2016
	015-0195	1.890	2.390	0.500	5	_			Subbase Deformation	High	0.0		1.0		50	
	015-0317	1.836	2.550		8	-			Accumulated Deformation	High	0.0		0.1		90	
	015-0104	6.170	6.370		2	-			Subbase Deformation	High	0.0		1.0		50	
	015-0273	8.360	8.860	0.500	5	-			Subbase Deformation	High	0.0		1.0		50	
	015-0332	4.130	4.730		6	-			Subbase Deformation	High	0.0		1.0		50	
	015-0332	3.430	4.130		7	-			Subbase Deformation	High	0.0		0.1	290	50	
	015-0185	9.750	9.900		2				Subbase Deformation	High	0.0		0.5		50	
	013-0185	17.890	19.440		16	_			Subbase Deformation	High	0.0		0.2		50	
	015-0185	4.650	4.950		3				Aggregate Instability	High		90	1.0		160	
	015-0332	2.030	3.430		14				Rutting (IAL)	High	8.1		1.0		180	
	015-0332	11.948	13.920		20	-			Subbase Deformation	High	0.0		0.2		50	
	015-0217	6.750	7.057	0.307	3				Rutting (IAL)	High	8.8	4	1.0		70	
	013-0217	2.750	3.050	0.300	3	-			Subbase Deformation	High	0.0		1.0		50	
	013-0217	10.220	10.620		2	-			Aggregate Instability	High	10.0		1.0		150	
	015-0332	8.930	9.270		3	_			Aggregate Instability	High	7.5	5	0.3		130	2018
	013-0332	8.560	8.625		1				Aggregate Instability	High	6.2	_	1.0	370	130	
	015-0352	3.897	5.915		20	-				-	0.0		0.1		50	
	015-0155	5.000	5.915		20				Subbase Deformation	High		19	1.0			
	007-0016-D	8.420	8.820		2	-			Aggregate Instability	High		55	1.0		160	
	015-0332	8.420	8.820	0.400					Aggregate Instability	High	9.8				50	
		5.370	5.830		2				Rutting (IAL)	High	0.0		0.2		90	
	01S-0317_05.26-D 01S-0185	6.050	6.350		3				Accumulated Deformation	High			1.0		70	
		3.350			13				Accumulated Deformation	High	5.3				70	
	01S-0185 007-0078-I	16.140	4.650	1.300	13				Rutting (IAL)	High	8.3 9.9		0.2 1.0		140	
					6				Aggregate Instability	High			1.0		50	
	015-0090	4.950	5.550		2	-			Subbase Deformation	High	0.0					
	015-0185	9.550	9.750		-	-			Subbase Deformation	High	3.6		1.0		50	
	007-0044-1	3.220	3.620	0.400	2	_			Subbase Deformation	High	9.7		1.0		150	2021
	015-0104	4.370	6.170		18	_			Rutting (IAL)	High	6.3		0.2		50	
	01S-0327-I	0.570	0.988	0.418	-	_			Rutting (IAL)	High	4.1		0.3		50	
	007-0028-1	13.050	13.313	0.263	1				Aggregate Instability	High	7.7		1.0		160	
	007-0115-D	15.630	15.930	0.300	2	-			Aggregate Instability	High	10.0	24	1.0		140	
	015-0195	1.090	1.890		8	-			Subbase Deformation	High	9.3		0.1		50	
	007-0078-1	0.740	1.140		2	-			Accumulated Deformation	High	6.6		1.0		50	
	015-0311	6.220	6.250	0.030	1	-			Aggregate Rutting (RPP)	High	0.0	8	1.0		50	
	015-0195	15.790	16.290	0.500	5	-			Rutting (IAL)	High	5.0		1.0		50	
	007-0058-1	0.790	1.190	0.400	2	-			Aggregate Instability	High	10.0		1.0		150	
	015-0195	2.390	4.290		19				Rutting (IAL)	High	4.4		0.2		50	
	015-0273	10.260	10.810		6				Rutting (IAL)	High	5.5		0.2		50	
	015-0104	9.977	11.948	1.971	20				Rutting (IAL)	High	7.1		0.2		50	
	015-0273	9.960	10.260	0.300	3				Subbase Deformation	High	5.7		1.0		50	
	015-0273	1.893	3.677	1.783	18				Rutting (IAL)	High	0.0		0.1		50	
	018-0235	0.060	1.993	1.933	20				Subbase Deformation	High	3.9		0.1	250	50	
	015-0247	0.240	2.103	1.863	19				Accumulated Deformation	High	8.6		0.1	450	50	
602	015-0195	4.290	6.090	1.800	18	7			Accumulated Deformation	High	7.1	4	0.2	520	50	2023

GeoSolye


									· · · · · · · · · · · · · · · · · · ·		
Volume		Structural Treatment			STLTe	erminal Crite	ria by ONRC	Category		Cum	nulative Rehab
Туре	Rate	Unit	Description		One Network Road	Level of	Level of	Excessive	Urban / Rural		
OVLA	\$ 540		Asphaltic concrete o		Classification (ONRC)	Service	Service	Maintenance	Factor		Area (m²)
OVLG	\$ 133	/ m³	Granular overlay plu			(Structural)	(Surfacing)	Cost			. ,
STAB	\$ 170		_	overlay plus chipseal surface	High Volume	10	10	15	0.8	5,000,000	
FBS	\$ 398		Foamed bitumen sta	abilisation	National	10	20	30	0.8	1 · ·	
RCN	\$ 133	-	Granular reconstruct		Regional	50	30	40	0.8	3,000,000	
SMRA	\$ 648	-	Structural Mill and R	eplace Asphalt	Arterial	50	40	60	0.8	2,000,000	
STR	\$ 160		Stabilise and Recons	struct	Primary Collector	60	50	80	1	1,000,000	/
CS	\$ 6	/ m²	Spray Seal		Secondary Collector	70	60	90	1		9 6 7 8 8 7 8 6
					Access	80	80	90	1		2016 2019 2025 2025 2028 2031 2037 2037
Distress	Mode Wei	ghtings			Low Volume	90	90	95	1	_	- RPP Determined FWP
LRG	1		Functional Distress			•		Þ	0		
LRE	0		Structural Economic	· · · · · · · · · · · · · · · · · · ·							
LRI	1	-	Aggregate Instability	у		C		-	Dahak	A	
LSF	1		Surfacing Fatigue			Struct	urai ire	eatment	Kenab	Area (n	n-j
LSE	1		Surfacing Economic		3.0%						450.000
LDO	0		dTIMS Optimal (Unli	imited)							450,000
LDS	0		RCA Specified								- 400,000
~ ~	0	< I I I I I I I I I I I I I I I I I I I	RCA Specified Durat	ion (vears)	t 2.5%						
SC				ion (realis)	e						
	1		Fatigue Calibration		VD Te	-					- 350,000
	-	Image: 1			2.5%		I.	- 1			- 350,000
	1 Update	Image: 1			2.0%		I .	11			- 350,000
SF	Update	<) 			Area	L	١.	1			- 350,000
SF	Update	Image: 1	Fatigue Calibration		Area		h .	11.			- 350,000 - 300,000 - 250,000
SF Rehabil DF1	Update itation Prior	<) 	Fatigue Calibration		Area			1			- 350,000 - 300,000 - 250,000 - 200,000
DF1 DF2	Update itation Prior 1 1.1	<) 	Fatigue Calibration Fatigue Calibration Negligible Minor		Area						- 350,000 - 300,000 - 250,000
SF Rehabil DF1 DF2 DF3	Update itation Prior 1 1.1 1.2	<) 	Fatigue Calibration Fatigue Calibration Negligible Minor Moderate		Area						- 350,000 - 300,000 - 250,000 - 200,000 - 150,000
SF Rehabil DF1 DF2 DF3 DF4	itation Prior 1 1.1 1.2 1.3	<) 	Fatigue Calibration Fatigue Calibration Negligible Minor Moderate High		Area				1.		- 350,000 - 300,000 - 250,000 - 200,000
SF Rehabil DF1 DF2 DF3 DF4	Update itation Prior 1 1.1 1.2	<) 	Fatigue Calibration Fatigue Calibration Negligible Minor Moderate		1.5%				İ .,		- 350,000 - 300,000 - 250,000 - 200,000 - 150,000
SF Rehabil DF1 DF2	itation Prior 1 1.1 1.2 1.3	<) 	Fatigue Calibration Fatigue Calibration Negligible Minor Moderate High		J.5%						- 350,000 - 300,000 - 250,000 - 200,000 - 150,000 - 100,000
SF Rehabil DF1 DF2 DF3 DF4	itation Prior 1 1.1 1.2 1.3	<)	Fatigue Calibration Fatigue Calibration Negligible Minor Moderate High		L.5%						- 350,000 - 300,000 - 250,000 - 250,000 - 150,000 - 100,000 - 50,000 - 0
SF Rehabil DF1 DF2 DF3 DF4	itation Prior 1 1.1 1.2 1.3	<)	Fatigue Calibration Fatigue Calibration Negligible Minor Moderate High		L.5%	2019 2020 2020 2021 2021 2022 2022 2022	2023 2024 2025 2026	2027 2028 2029 2030	2031 2032 2033 2033 2034 2034 2034 2034 2034	2035 2036 2036 2037 2038 2038 2038 2038 2038 2038 2038 2038	- 350,000 - 300,000 - 250,000 - 250,000 - 150,000 - 100,000 - 50,000 - 0
SF Rehabil DF1 DF2 DF3 DF4	itation Prior 1 1.1 1.2 1.3	<)	Fatigue Calibration Fatigue Calibration Negligible Minor Moderate High		L.5%	2019 2020 2021 2022 2021		2020 5030 60 Year of Ref		2035 2036 2037 2038	- 350,000 - 300,000 - 250,000 - 250,000 - 150,000 - 100,000 - 50,000 - 0
SF Rehabil DF1 DF2 DF3 DF4	itation Prior 1 1.1 1.2 1.3	<)	Fatigue Calibration Fatigue Calibration Negligible Minor Moderate High		L.5%	2019 2020 2021 2021 2022				2035 2036 2037 2038	- 350,000 - 300,000 - 250,000 - 250,000 - 150,000 - 100,000 - 50,000 - 0

GeoSolye

Forward Work Programme

Cost of S	tructural Treatm	ents								Cumulative Debah Area (m2)
Туре	Rate Unit			Description						Cumulative Rehab Area (m ²)
OVLA	\$ 540 / m ³	1		Asphaltic conc	ete overlay					250,000
OVLG	\$ 133 / m ³	1		Granular overla	ay plus chipse	eal surfac	e			200,000
STAB	\$ 170 / m ³	i -		Stabilised gran	ular overlay	plus chips	eal surfa	e		
FBS	\$ 398 / m ³	1		Foamed bitum	en stabilisati	ion				150,000
RCN	\$ 133 / m ³	1		Granular recon	struction					100,000
SMRA	\$ 648 / m ³	1		Structural Mill	and Replace	Asphalt				50,000
STR	\$ 160 / m ²	1		Stabilise and R	econstruct					0
CS	\$ 6 / m ²			Spray Seal						2016 2018 2018 2028 2030 2032 2033 20340 2038 2038 2038

Rehabilit	ation Priority W	eightings								
DF1	1			Negligible					1	Structural Treatment Rehab Area (m²)
DF2	1.1			Minor					3.5%	
DF3	1.2			Moderate						_
DF4	1.3			High						
DT	1			Design Traffic						
									3.0%	
Distress	Mode Weighting	s								
LRG	1 <	Ĺ	÷.	Functional Dist	tress					
LRE	2 ∢	_	- F	Structural Econ	omic				2.5%	
LRI	2 ∢		F	Aggregate Insta	ability				Tes	
LSF	1 <			Surfacing Fatig					8	
LSE	1			Surfacing Econo					E 2.0%	
LDO	0 🔸			dTIMS Optimal					Are 2.0%	
LDS	0 4			RCA Specified					, ¥	
SC	0 4			RCA Specified D	Duration (yea	rs)			Percentage of Network Area (FWD Tested)	
SF	1 (Fatigue Calibra					2 1.5%	
									e o	
	Update								ntag	
									<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
ONRC	R/U Facte LOS	(sur) LOS	(str)	COST					Pe	
High Vol		10	20	50	10	20	50		1	
Nationa		10	20	50	10	20	50			1 111 111 1
Regiona		15	20	50	15	20	50		0.5%	**************************************
Arterial	1	20	20	50	20	20	50			
Primary		25	25	50	25	25	50			
Seconda		30	30		30	30	50		0.0%	<u> </u>
Access	1	35	35	55	35	35	55			2016 2017 2018 2018 2019 2019 2019 2019 2019 2019 2019 2019
Low Vol	-	50	50		50	50	70			ন ন ন ন ন ন ন ন ন ন ন ন ন ন ন ন ন ন ন
	•			0 4		50				Proposed tear of Kenabilitation

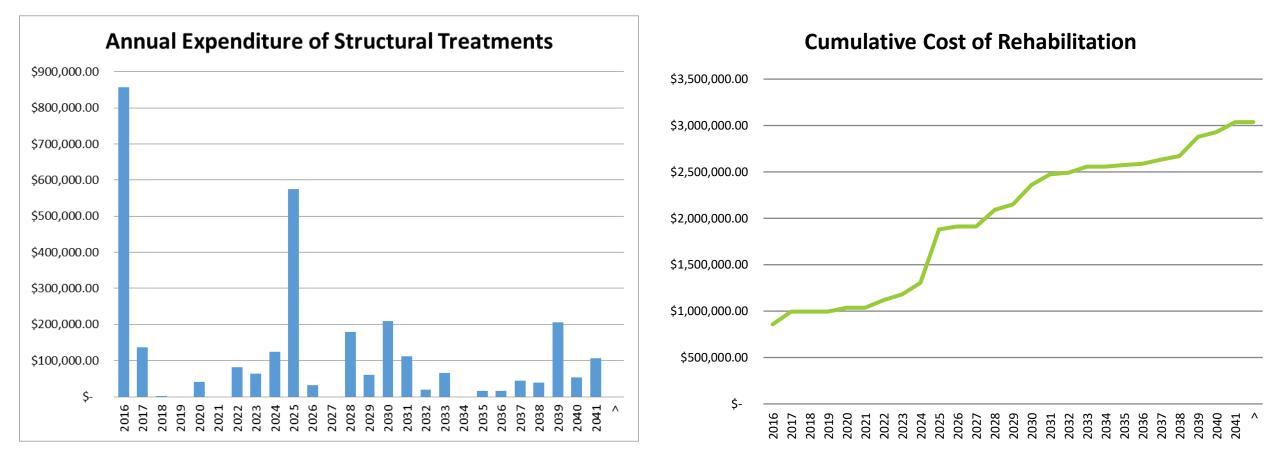
GeoSolye

50,000

40,000 Structur

30,000 ab

20,000 annum

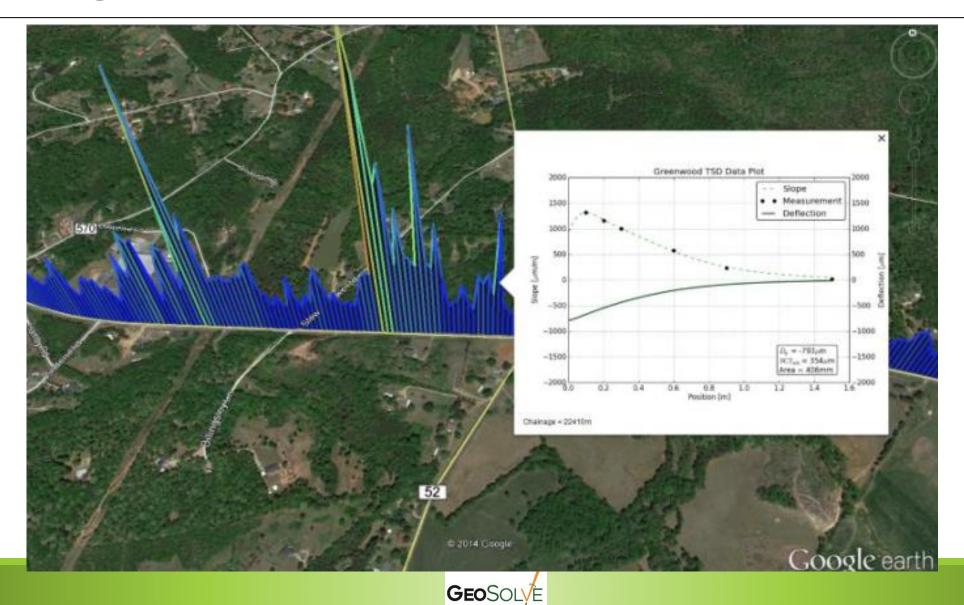

10,000

0

Re

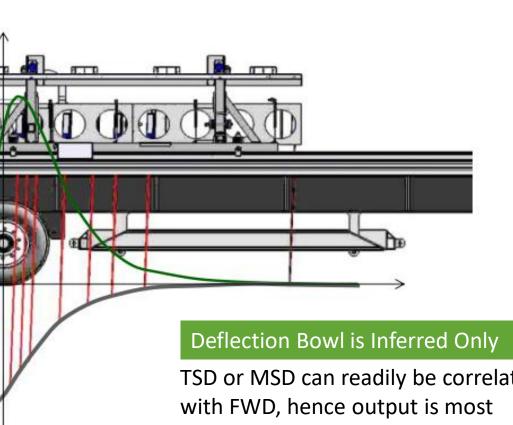
(m²) per

This web based software enables users to readily update or revise the FWP at any future date to adapt to either (i) a required level of service or (ii) a specified budget



Traffic Speed Deflectometer Technology

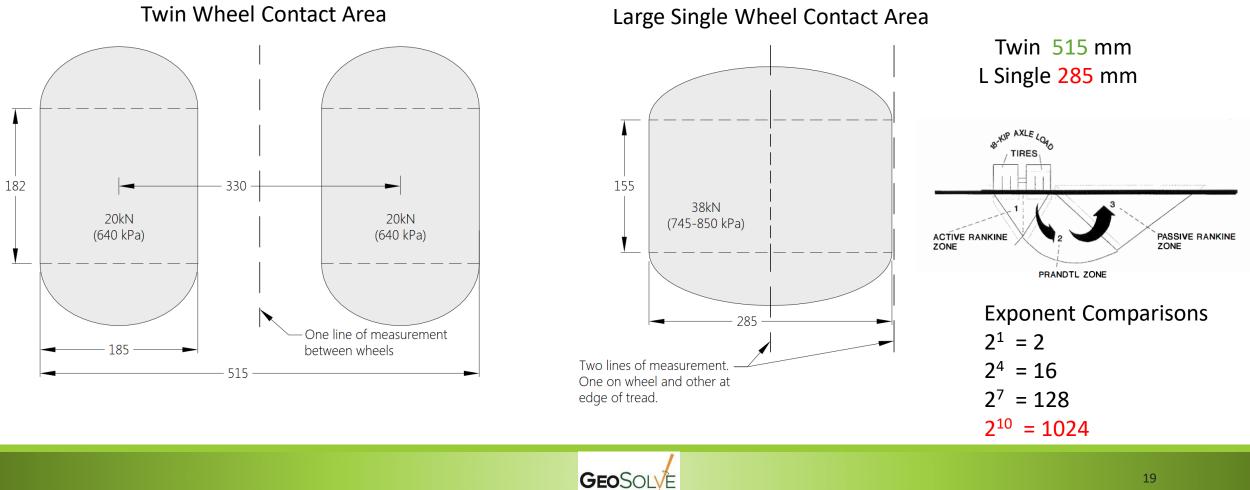
Google Earth Presentation


Traffic Speed Deflectometer (TSD now also MSD)

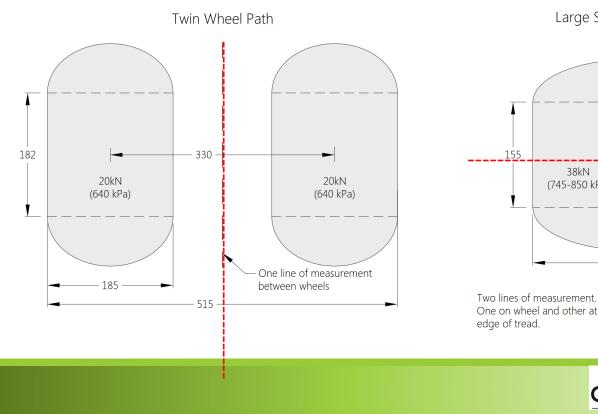
TSD deflections can be back-calculated

Multi-Speed Deflectometer (MSD) operates at same or wider speed range as TSD, both are screening tools but MSD uses wider frequencies as with a Pavement Analyser.

GREENWOOD ENGINEERING


TSD does not measure deflection directly, hence correlation is made initially to Structural Life (in terms of millions of ESA) then yearly HCV traffic volume is used to generate Remaining Structural Life (years).

TSD or MSD can readily be correlated with FWD, hence output is most useful in terms of Structural Life, directly using observed distress or digitally from electronic "signature"


Contact Areas MSD Large Single (or Twin) TSD Twin Tyres

19

Deflection Bowl Definition TSD Twin Tyres MSD Large Single (or Twin)

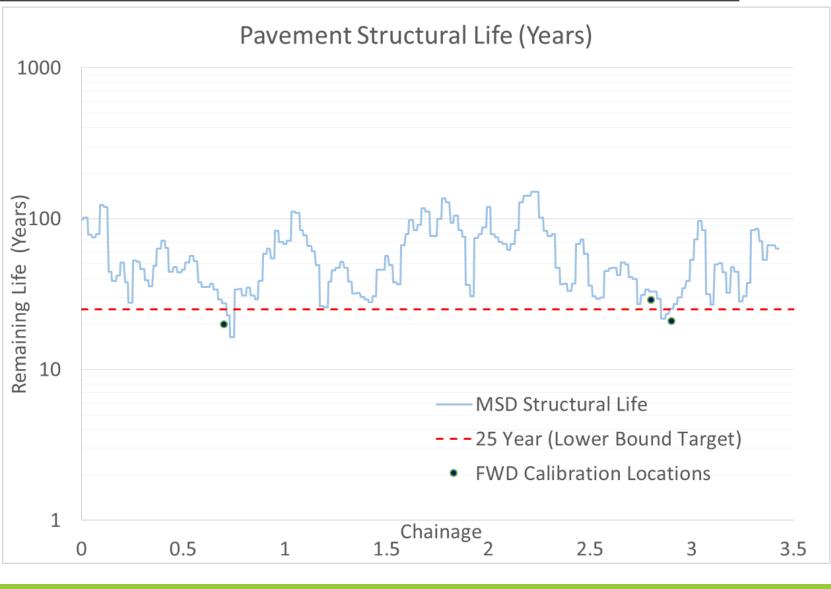
TSD Twin Wheel 2-D Longitudinal Profile Between Wheels

MSD Large Single Wheel or Twin Wheel 3-D Bowl Longitudinal and Transverse Through Wheels

GEOSOLVE

Large Single Wheel Path (ii) (iii) (iii) (iv) 38kN (745-850 kPa) 285 (v) (vi) easurement.

MSD presents several advantages:

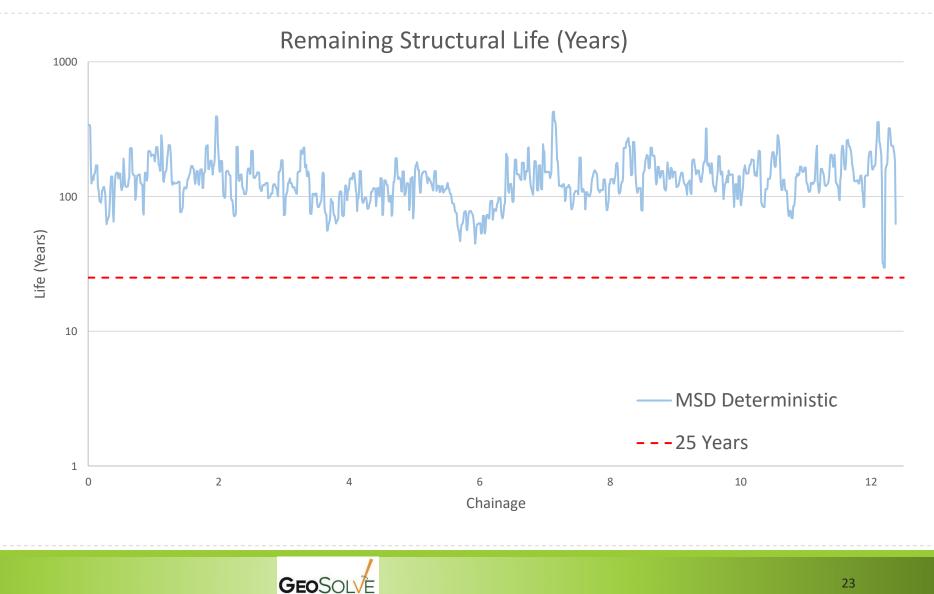

- Lower capital cost enabling testing of both wheeltracks and multiple units in each country.
- (ii) Ideal for untested wheelpath of TSD
- (iii) Better definition of top layer moduli for predicting top down cracking of AC and shallow shear life of weak basecourses
- (iv) Shorter truck can be used (2 axle) for testing roundabouts, corners, or narrow urban roads with tight turning.
- (v) Testing at slow speeds as well as high
- (vi) Operates in wet or dry, rough or smooth, not only surfaced but also construction sites and unsurfaced roads
- (vii) Year round availability in NZ ! (all seasons)

Example use of TSD- MSD - FWD

TSD or MSD data are typically generated at 10 or 20 metre intervals, enabling much more continuous profile of pavement structural life.

FWD data are not averaged so extremities are more evident. If only the critical (ie lower life) points are calibrated using FWD, a more robust life estimate results at minimal cost. Upper bound life is seldom of interest, as in practice the road performance is governed by the lower 10 percentile.

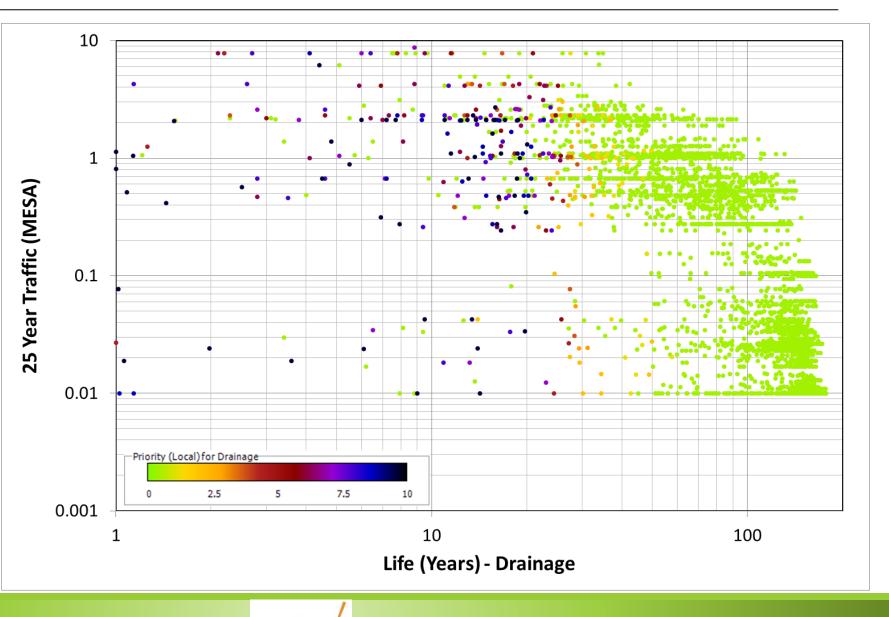
If the MSD run indicates that the pavement life is consistently good (usually set at above 25 years), further testing may not be warranted, as it will not impact on the Forward Works Programme.


Comparison Between TSD, MSD and FWD

GEOSOLVE

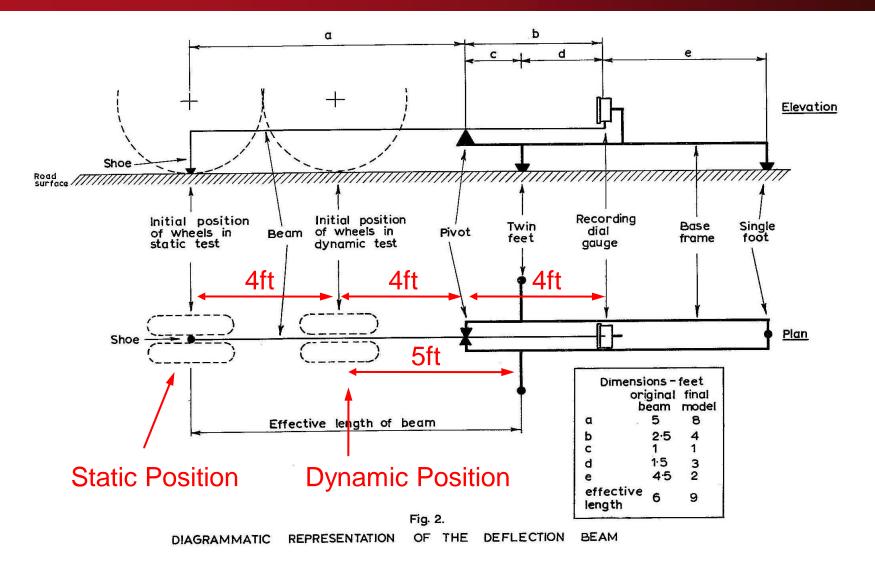
MSD with Adequately Performing Roads

Many local roads may be conservatively designed and hence need only MSD along one lane to establish that none or only short intervals will affect a 25 year Forward Work Programme.

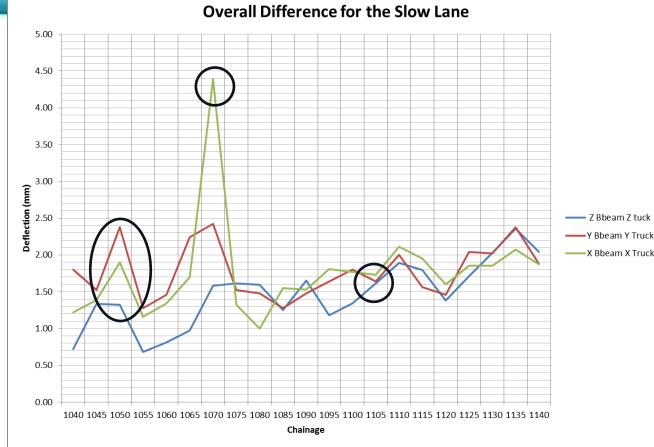

0.6 MESA Design Traffic

Subsurface Drainage – bonus deliverables

A functional spreadsheet is provided and road and chainage identifiers appear on mouseover.


The advantage is that the darker colours show on which road and where, subsurface drainage would have most benefit/cost. (Least pavement life and most likely to respond to subsurface drainage)

Equally importantly, the green points show where subsurface drainage is unlikely to be of any benefit, an aspect that is difficult to judge from surface observation.


GEOSOLVE

Beam Limitations: Static versus Dynamic Test

Beam Limitations: Overall Difference

- Range of Variability between 3% and 30%
- Up to 200% difference in occasional spikes

www.beca.com (Courtesy John Hallett)

