Pavement Construction QA

Predicting Finished Level Deflections (FLD) from in-situ deflection testing during construction at subgrade and/or subbase level

Sam Wong, Gina Schmitz, Dave Stevens & Graham Salt

Current QA Practice for Greenfield Projects

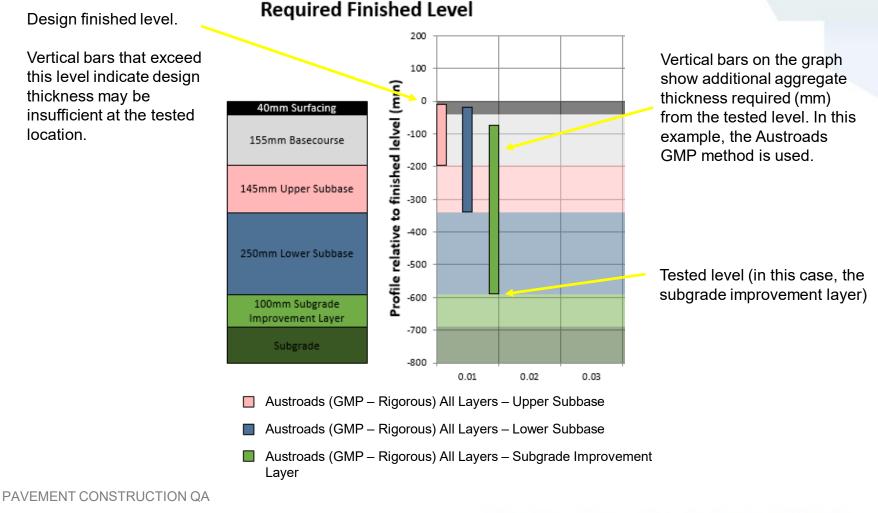
- Typically require deflection testing at different levels as a quality assurance check
- To confirm assumptions made during design are achieved/appropriate
- Often confirmation is only obtained after basecourse or surfacing has been placed, and intervention at that stage, if needed, is typically more expensive.
- Therefore, it is proposed that deflection testing is done at an early stage (on exposed subgrade, subgrade improvement layer and/or subbase) to confirm if:
 - subgrade stiffness assumed is suitable,
 - expected finished level deflection is within the targeted value, and
 - sufficient compaction has been done on the applied layer(s).

Advantages of construction QA and finished level deflection prediction at the early stage of construction include:

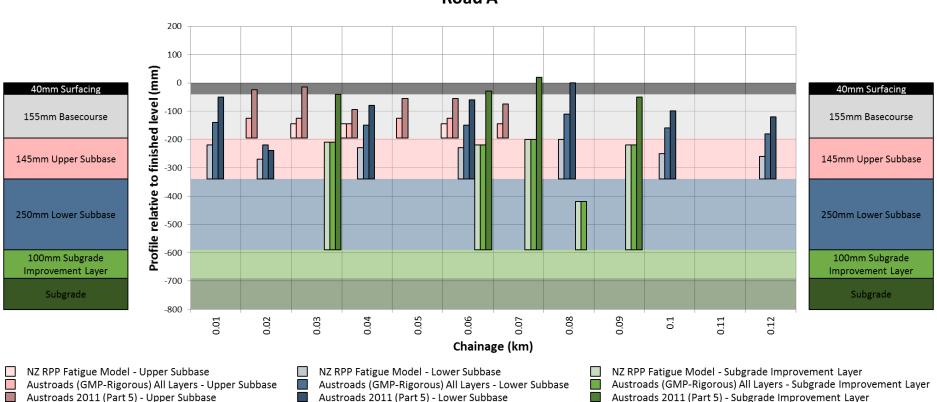
- Early confirmation on whether final design expectations (or contractual requirements) can be met
- Possibility of intervention (e.g. additional overlay requirements, additional compaction) at an early stage if existing design requirements cannot be met.

Any form of in situ deflection testing could be used, but in order of preference:

(i) FWD with plate stress level appropriate for the finished condition (or due allowance made otherwise)

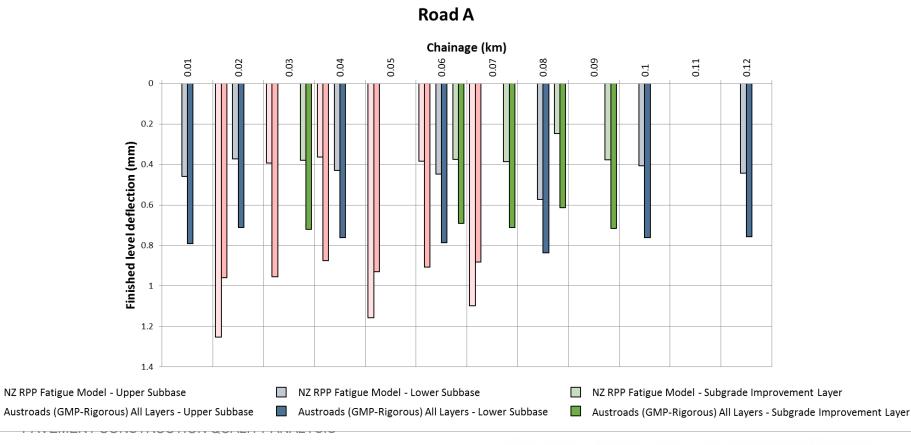

- (ii) LWD with correction for stress level
- (iii) Benkelman Beam with correction for stress level
- (iv) Static plate load test (with correction for stress level and dynamic loading)

Possible outcomes from this process include:

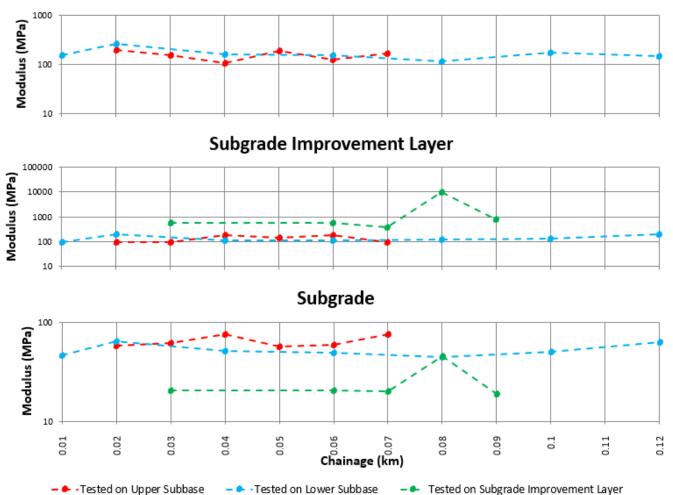

- Additional aggregate thickness requirements
- Finished level deflections if any specification requirements
- Comparisons with Austroads' modular ratios compares construction quality with Austroads expectations

PAVEMENT CONSTRUCTION QA

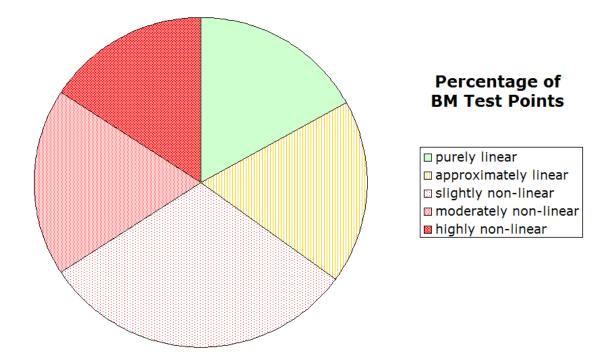
QA Output – Additional Aggregate Requirement


Additional aggregate thickness requirements from testing on subgrade improvement layer, lower subbase and upper subbase. Three design criteria were used here.

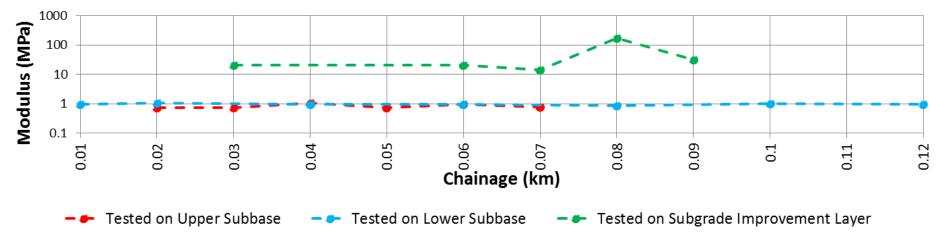
Road A


16[™] NZ TRANSPORT AGENCY & NZIHT ANNUAL CONFERENCE

Finished Level Deflections predicted from testing on subgrade improvement layer, lower subbase and upper subbase.

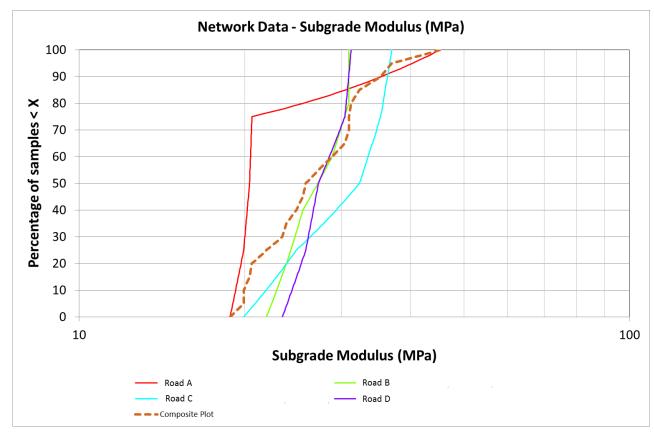

16[™] NZ TRANSPORT AGENCY & NZIHT ANNUAL CONFERENCE

Layer moduli achieved from testing on subgrade improvement layer, lower subbase and upper subbase.


Lower Subbase

Two thirds of NZ pavements have non-linear subgrades (much greater percentage than in Australia). Due consideration is essential for meaningful predictions.

PAVEMENT CONSTRUCTION QA

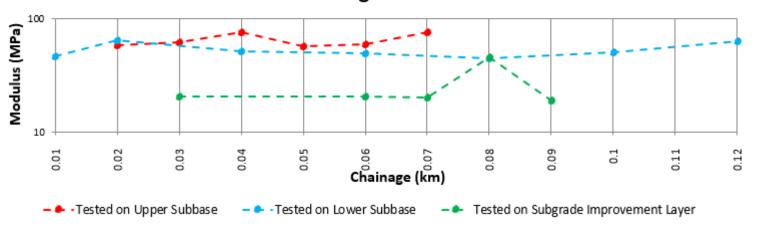

Ratio of moduli between successive overlying layers, compared with Austroads expectations for a new pavement. Values greater than 1.0 indicate good compaction. Example of results from testing on lower subbase and upper subbase shown below.

Normalised Modular Ratio

NMR = (E1/E2)measured / (E1/E2)Austroads

PAVEMENT CONSTRUCTION QA

Cumulative distribution of empirical and mechanistic outputs


Graham Salt

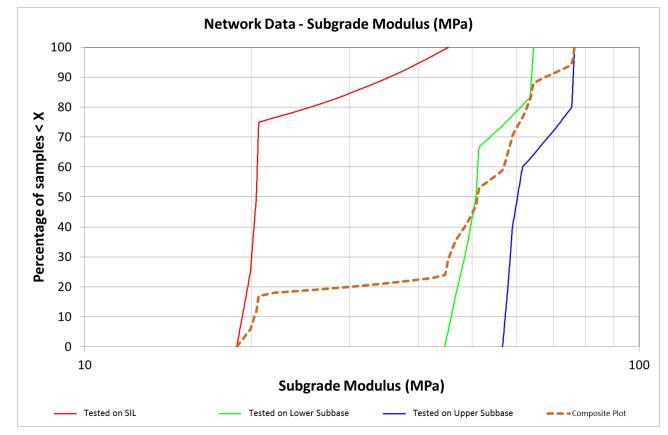
16[™] NZ TRANSPORT AGENCY & NZIHT ANNUAL CONFERENCE

In practice, the stiffness of each pavement layer (which ultimately affects the finished level deflection) is far from constant, as shown in the example below.

Main factors affecting the stiffness include:

- Applied stress level (for non-linear elastic materials)
- Depth of confinement
- Seasonal variations (e.g. temperature and rainfall)

Subgrade

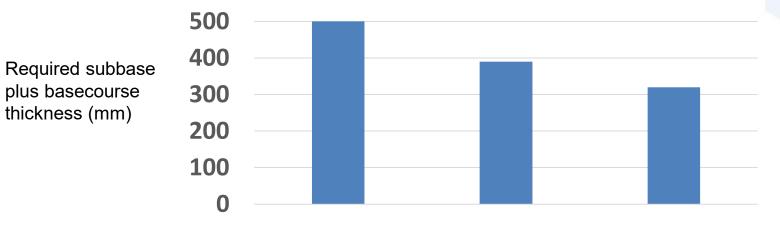

PAVEMENT CONSTRUCTION QA

- 1. To quantify benefits of detailed construction QA testing, particularly during early stages of construction
- 2. To refine models for predicting the deflection on a finished pavement utilising measurements during construction of deflection on subgrade and/or subbase layers

FWD Testing

Method :	Austroads deflection (linear elastic similar)	ELMOD	ELMOD plus regional calibration.
Modulus Dependence	Constant	Deviator Stress	Deviator Stress plus Confinement
Comments	Inclusion of psuedo rigid layer at depth, can generate any lesser deflection that is desired but vertical strain at top of subgrade will be wrong.	Traditional method, good when the total increment in pavement thickness is minimal, say less than 100 mm. Otherwise result varies significantly from reality.	Uses regional database of structural analyses to provide a reality check adjustment for <u>confinement</u> , after ELMOD's deviator stress model has been applied.

Effects of Non-Linearity


Stress softening - Moduli increases as stress experienced decreases

PAVEMENT CONSTRUCTION QA

Graham Salt

16TH NZ TRANSPORT AGENCY & NZIHT ANNUAL CONFERENCE

Conclusion from FWD Testing on Top of SIL Layer

Overlying Granular Layer Thickness (mm)

Method	Austroads deflection (linear elastic similar)	ELMOD	ELMOD plus regional calibration.
Modulus Dependence	Constant	Deviator Stress	Deviator Stress plus Confinement
Function	С	f (1/σ1)	$f(1/\sigma 1, \sigma 3)$

Spreadsheet now adapted to automate the iterative procedure for calculating non-linear moduli and strains. Increasing the subgrade modulus results in increases in moduli of overlying granular layers, which in turn provides better loadspread i.e. less stress at top of subgrade and hence greater subgrade modulus. The process is then iterated and essentially converges after 3 or 4 iterations.

																				K	n
Number of L	Loads	1			WMAPT (°C)		18	NZ - Queenstow	wn 🔻		Deviatoric Stress	c0	82.5	5 MPa	Granular Ve	ertical Strain (Criterion	ELMOD 2009 - 0	Granular 🔹	29771	6.0
Number of L	Layers	5			Measured Tem	пр. (°С)	18	1.000			Correction	n	-0.002	1	Asphalt Ten	nsile Strain Cr	riterion	Austroads 2012	2 Figure 6.11 💌	5373	5.0
								TNZ Mix 20 (60/)/70) Basalt 🛛 👻						Cemented 1	Cemented Tensile Strain Criterion		Ramped Function (E = 3500 💌		350	12.0
Design Life ((years)	25			In-Situ AC Mod	dulus (MPa)	2740	TNZ Mix 20 (u	60/70) Basalt	t	Confinement	Init Depth	495	5 mm	FBS Tensile	FBS Tensile Strain Criterion		NZ LTPP FBS			
Asphalt Life (years)		25			In-service Vehicle Speed		10		<u>Default</u>			Init c0	67.0	67.0 MPa		Subgrade Vertical Strain Criterion		Austroads Isotropic - Subgrac 🔻		4147	10.9
					Project Reliabi	ility	95.0%				Correction	Init n	-0.094								
			I												Vertical Strain	s in the middle o	ofeach layer or to	op of subgrade	Tensile Strain	ns at the bottom o	of each layer
Load Number	Descriptio	on of Load		Gross Weight (T)	Tyre Pressure (kPa)	% GW on Half Axle	Dual Spacing (mm)	Wheels per Half Axle	Tandem Factor	Wander Factor	Annual Passes	% Growth	Single Tyre Load (N)	Radius of Load (mm)	Vertical µStrain	Critical Layer	Deflection (mm)	Allowable Repetitions	Tensile µStrain	Critical Layer	Allowable Repetitions
1	ESA	[•	8.2	750	50	330	2	1	1	400000	0	20104	92	1080	1	0.76	3.6E+07		-	-
											Vertical Strain	n Calculations	Horizontal Stra	ain Calculations		Calculations for Selecte		ted Load #:		1	
Layer Number	Layer	Туре	Ī	Thickness (mm)	Resilient Modulus (MPa)	UCS (MPa)	Traffic Multiplier	Poisson's Ratio	Modular Ratio	Allowable MR	CDF	Remaining Life (years)	CDF	Remaining Life (years)	Design ESA	Vertical Strain	Horizontal Strain	Horizontal Stress	Central Deflection	Curvature	
1	Unbound Gra	nular		155	450	-	1	0.35	1.8	2.3	0.278	90	0	99	1.00E+07	1080	-326	156	0.76	0.48	
2	Unbound Gra	nular	•	145	250	-	1	0.35	2.27	2.99	0.16	99	0	99	1.00E+07	720	-391	48	1.06	0.71	
3	Unbound Gra	nular		250	110	-	1	0.35	2.16	2.64	0.138	99	0	99	1.00E+07	623	-261	4	1.55	1.17	
4	Unbound Gra	nular	•	100	51	-	1	0.35	0.62	1.32	0.134	99	0	99	1.00E+07	604	-178	6	2.17	1.85	
	Subgrade		T		83	-	1	0.35			0.056	99	0	99	1.00E+07	449	-	-	1.68	1.35	
				650							0.278	89.9	0	99							
	Austroad- 5	ia 0.4 / m		292	Dage			L	ļ						1 566 754	E 075 7 04	4.7. 156.44	0.0.001.75	1 54 5 42		
	Austroads Fig 8.4 (mm) 292 Pass									-		1, 300, /5	0.3, 2/3.7, 2.	14.7, 150, 11	19.2, 93.1, 75	7.1, 34.0, 43.	3				

PAVEMENT CONSTRUCTION QA

Precedent Performance Design Spreadsheet

- Input cells in yellow from FWD test (ELMOD output):
- a) Depth of material overlying subgrade during testing (accounts for confinement of subgrade)
- b) Subgrade modulus at 100 kPa reference stress
- c) ELMOD non-linearity exponent

Deviatoric Stress	c0	82.5	MPa
Correction	n	-0.002	
Confinement	Init Depth	495	mm
Depth Correction	Init c0	67.0	MPa
	Init n	-0.094	

					Vertical Strain	s in the middle o	feach layer or to	Tensile Straii	of each layer				
er or	Annual Passes	% Growth	Single Tyre Load (N)	Radius of Load (mm)	Vertical µStrain	Critical Layer	Deflection (mm)	Allowable Repetitions	Tensile µStrain	Critical Layer	Allowable Repetitions		
	400000	0	20104	92	1080	1	0.76	3.6E+07	-	-	-		
	Vertical Strain	Calculations	Horizontal Stra	in Calculations		Calculatio	ns for Select	ed Load #:		1			
ble	CDF	Remaining Life (years)	CDF	Remaining Life (years)	Design ESA	Vertical Strain	Horizontal Strain	Horizontal Stress	Central Deflection	Curvature			
	0.278	90	0	99	1.00E+07	1080	-326	156	0.76	0.48			
1	0.16	99	0	99	1.00E+07	720	-391	48	1.06	0.71			
Ļ	0.138	99	0	99	1.00E+07	623	-261	4	1.55	1.17			
!	0.134	99	0	99	1.00E+07	604	-178	6	2.17	1.85			
	0.056	99	0	99	1.00E+07	449	-	-	1.68	1.35			
	0.278	89.9	0	99									
					1, 566, 756.5, 275.7, 214.7, 156, 119.2, 93.1, 75.1, 54.6, 43.3								

Cumulative damage factor for proposed design is 0.056 for subgrade strain, <1 so design is OK (but basecourse life will govern as CDF is 0.278)

Predicted Finished Level Deflection (D0s)

END OF MAIN PRESENTATION

